TRANSPORT FOR LONDON

Central London Grid

A network of Quietways and Cycle Superhighways will - when completed - make up 100km of safer cycle routes known as the Central London Grid.

Quietways are signposted cycle routes, run on quieter back streets to provide for those cyclists who want to travel at a more relaxed pace.

We are building the network of Quietways together with London boroughs, The Royal Parks and the Canal and River Trust. Central London will have 85km of the entire network.

Cycle Superhighways are on main roads and often segregate cyclists from other traffic.

The Central London Grid is funded by the Mayor's Vision for Cycling, a 10-year plan to deliver cycling improvements across London with spending set to total £913m by 2022. More than £54m of this funding will be allocated to build the grid network.

- Improvements began in 2014
- The first Quietway route, from Waterloo to Greenwich, launched in June 2016 seven Quietways are due to be complete by 2017
- · Boroughs will consult locally as more designs are developed

Have your say

Find out which boroughs are consulting, comment on the plans and see results for those already taken place, on our consultation hub.

Central London Grid partners

- Canal and River Trust
- City of London
- City of Westminster
- London Borough of Camden
- London Borough of Hackney
- London Borough of Islington
- · London Borough of Lambeth
- London Borough of Southwark
- London Borough of Tower Hamlets
- Royal Borough of Kensington & Chelsea
- The Royal Parks

Share

Figure 2.3 Cycling Level of Service assessment matrix (part I)

Factor	Indicator	Critical*	Basic CLoS (score=0)	Good CLoS (score=1)	Highest CLoS (score=2)	Score
Safety						(48)
Collision risk	Left/right hook at junctions	Heavy streams of turning traffic cut across main cycling stream	Side road junctions frequent and/or untreated. Conflicting movements at major junctions not separated	Fewer side road junctions. Use of entry treatments. Conflicting movements on cycle routes are separated at major junctions	Side roads closed or footway is continuous. All conflicting streams separated at major junctions	
	Collision alongside or from behind	Nearside lane in range 3.2m to 4.0m	Cyclists in wide (4m+) nearside traffic lanes or cycle lanes less than 2m wide	Cyclists in dedicated cycle lanes at least 2m wide	Cyclists separated from motorised traffic	
	Kerbside activity or risk of collision with door	Cycle lanes < 1.5m alongside parking / loading with no buffer	Frequent kerbside activity / effective width for cyclists of 1.5m	Less frequent kerbside activity / effective width for cyclists of 2m	No kerbside activity / No interaction with vehicles parking or loading	
	Other vehicle fails to give way or disobeys signals		Poor visibility, no route continuity across junctions and unclear priority	Clear route continuity through junctions, good visibility, priority clear for all users, visual priority for cyclists across side roads	Cycle priority at signalised junctions; visual priority for cyclists across side roads	
Feeling of safety	Separation from heavy traffic		Cyclists in general traffic lanes or cycle lanes less than 2m	Cycle lanes at least 2m wide	Cyclists physically separated from other traffic at junctions and on links, or no heavy freight	
	Speed of traffic (where cyclists are not separated)	85th percentile greater than 30mph	85th percentile greater than 25mph	85th percentile 20-25mph	85th percentile less than 20mph	
	Total volume of traffic (where cyclists are not separated)	>1,000 vehicles/ hour at peak	500 - 1,000 vehicles / hour at peak (but becomes 'critical' if 5 per cent or more are HGVs)	200 - 500 vehicles / hour at peak (but becomes 'basic' if 2 per cent or more are HGVs)	<200 vehicles / hour at peak	
	Interaction with HGVs	Frequent, close interaction	Frequent interaction	Occasional interaction	No interaction	

Figure 2.3 Cycling Level of Service assessment matrix (part 2)

Factor	Indicator	Critical*	Basic CLoS (score=0)	Good CLoS (score=1)	Highest CLoS (score=2)	Score
Social safety	Risk/fear of crime		High risk: 'ambush spots', loitering, poor maintenance	Low risk: area is open, well designed and maintained	No fear of crime: high quality streetscene and pleasant interaction	
	Lighting		Long stretches of darkness	Short stretches of darkness	Route lit thoroughly	
	Isolation		Route passes far from other activity, for most of the day	Route close to activity, for all of the day	Route always overlooked	
	Impact of highway design on behaviour		Layout encourages aggressive behaviour	Layout controls behaviour throughout	Layout encourages civilised behaviour: negotiation and forgiveness	
Directness	S ·					(8)
Journey time	Ability to maintain own speed on links		Cyclists travel at speed of slowest vehicle ahead (including other cyclists)	Cyclists can usually pass other vehicles (including cyclists)	Cyclists can always pass other vehicles	
	Delay to cyclists at junctions		Journey time longer than motor vehicles	Journey time around the same as motor vehicles	Journey time less than motor vehicles	
Value of time	For cyclists compared to private car use (normal weather conditions)		VOT greater than private car use value due to some sitespecific factors	VOT equivalent to private car use value: similar delay-inducing factors and convenience	VOT less than private car use value due to attractive nature of route	
Direct- ness	Deviation of route (against straight line or nearest main road alternative)		Deviation factor greater than 40 per cent	Deviation factor 20-40 per cent	Deviation factor less than 20 per cent	

Figure 2.3 Cycling Level of Service assessment matrix (part 3)

((_				
Factor	Indicator	Critical*	Basic CLoS (score=0)	Good CLoS (score=/)	Highest CLoS (score=2)	Score
Coherence	Ф					(6)
Connections	Ability to join/leave route safely and easily		Cyclists cannot connect to other routes without dismounting	Cyclists share connections with motor traffic	Cyclists have dedicated connections to other routes	
	Density of other routes		Network density mesh width >400m	Network density mesh width 250-400m	Network density mesh width <250m	
Way- finding	Signing		Basic direction signing (cyclists follow road signs and markings)	Some cycle-specific direction signing	Consistent signing of range of routes and destinations at decision points	
Comfort						(20)
Surface quality	Defects: non cycle friendly ironworks, raised/ sunken covers/gullies	Major defects	Many minor defects	Few minor defects	Smooth, high-grip surface	
Surface material	Construction		Hand-laid asphalt or unstable blocks/sets	Machine laid asphalt concrete or HRA; smooth blocks	Machine laid asphalt concrete; smooth and firm blocks undisturbed by turning vehicles	
Effective width without conflict	Clear nearside space in secondary position or motor vehicle speed/volume in primary position	Secondary: <1.5m Primary: high motor vehicle flow	Secondary: 1.5m Primary: medium motor vehicle flow	Secondary: 1.5-2.0m Primary: low motor vehicle flow	Secondary: >2.0m Primary: no overtaking by motor vehicles	
Gradient	Uphill gradient over 100m		>5 per cent	3-5 per cent	<3 per cent	
Deflect- ions	Pinch points caused by horizontal deflections		(Remaining) lane width <3.2m	(Remaining) lane width >4.0m or <3.0m (low motor vehicle flow)	Traffic is calmed so no need for horizontal deflections	
Undu- lations	Vertical deflections		Round top humps	Sinusoidal humps	No vertical deflections	

Figure 2.3 Cycling Level of Service assessment matrix (part 4)

Factor	Indicator	Critical*	Basic CLoS (score=0)	Good CLoS (score=1)	Highest CLoS (score=2)	Score
Attractiveness	ness					(12)
Impact on walking	Pedestrian Comfort Level (PCL)		Reduction in PCL to C, D or E	No impact on pedestrian provision or PCL never lower than B	Pedestrian provision enhanced by cycling provision or PCL A	
Greening	Green infrastructure or sustainable materials incorporated into design		No greening element	Some greening elements	Full integration of greening elements	
Air quality	PM10 & NOX values referenced from concentration maps		Medium to High	Low to Medium	Low	
Noise pollution	Noise level from recommended riding range		>78DB	65-78DB	<65DB	
Minimise street clutter	Signing required to support scheme layout		Large amounts of regulatory signing to conform with complex layout	Moderate amount of signing, particularly around junctions	Minimal signing, eg for wayfinding purposes only	
Secure cycle parking	Ease of access to secure cycle parking on- and off-street		No additional secure cycle parking	Minimum levels of cycle parking provided (ie to London Plan standards)	Cycle parking is provided to meet future demand and is of good quality and securely located	

Figure 2.3 Cycling Level of Service assessment matrix (part 5)

(100)					x 100)	TOTAL (max 100)
	Provision has spare capacity for large increases in predicted cycle use	Provision is matched to predicted demand flows	Provision does not match current levels of demand		Route matches predicted usage and has exceedence built into the design	Growth enabled
	Cycle route continuity maintained and secure cycle parking provided. Transport of cycles available. Layout can be adapted freely without constrain to meet demand or collision risk. Adjustments can be made to maintain full route quality when roadworks are present	Cycle route continuity maintained through interchange and some cycle parking available Links can be adjusted to meet demand but junctions are constrained by vehicle capacity limitations. Road works will not require closure; cycling will be maintained although route quality may be compromised to some extent	No consideration for cyclists within interchange area No adjustments are possible within constraints. Road works may require some closure		Smooth transition between modes or route continuity maintained through interchanges Facility can be expanded or layouts adopted within area constraints	Public transport integration Flexibility
(6)					E y	Adaptability
Score	Highest CLoS (score=2)	Good CLoS (score=1)	Basic CLoS (score=0)	Critical*	Indicator	Factor

^{*}For highlighted critical indicators, score is multiplied by 3 (basic = 0, good = 3, highest = 6)

Location	Direction		Monito	oring under	taken on Tue	esdays (b	efore trial o	on 12 Ma	ıy 2015 / dı	uring trial	on 17 Ma	y 2016)	
											1 Peak (5.		
		Before	During	Differ-	Difference	Before	During	Differ-	Differ-	Before	During	Differ-	Differ-
		trial	trial	ence	(%)	trial	trial	ence	ence (%)	trial	trial	ence	ence (%)
Judd Street (north of Tavistock Place)	Northbound	253	399	146	58	248	350	102	41	339	375	36	11
Judd Street (north of Tavistock Place)	Southbound	258	360	102	40	173	226	53	31	225	252	27	12
Leigh Street (east of Marchmont Street)	Eastbound	35	35	0	0	31	18	-13	-42	37	38	1	3
Marchmont Street (north of Tavistock Place)	Northbound	23	26	3	13	6	5	-1	-17	73	57	-16	-22
Marchmont Street (north of Tavistock Place)	Southbound	155	182	27	17	82	111	29	35	77	83	6	8
Marchmont Street (south of Tavistock Place)	Southbound	92	131	39	42	82	80	-2	-2	44	75	31	70
Montague Place (east of Malet Street)	Eastbound	206	109	-97	-47	193	116	-77	-40	262	170	-92	-35
Montague Place (east of Malet Street) Montague Street (north of Great Russell	Westbound	58 152	62 159	7	5	100	6 89	2 -11	50 -11	22 166	139	7 -27	-16
Street) Montague Street (north of Great Russell	Northbound Southbound	213	208	-5	-2	113	126	13	12	169	154	-15	-9
New Oxford Street (east of Charing Cross	Eastbound	177	244	67	38	163	154	-9	-6	257	271	14	5
Road) New Oxford Street (east of Charing Cross Road)	Westbound	441	611	170	39	392	504	112	29	486	662	176	36
Regent Square (east of Wakefield St)	Eastbound	176	252	76	43	179	114	-65	-36	287	149	-138	-48
Regent Square (east of Wakefield St)	Westbound	168	252	84	50	195	248	53	27	235	368	133	57
Russell Square (east of Bedford Way)	Eastbound	254	265	11	4	259	228	-31	-12	357	321	-36	-10
Russell Square (east of Bedford Way) Russell Square (north of Guilford Street)	Westbound	204 449	229 602	25 153	12 34	183 573	172 507	-11 -66	-6 -12	244 596	262 611	18 15	7 3
Russell Square (north of Guilford Street) Russell Square (north of Guilford Street)	Northbound Southbound	511	550	39	8	550	455	-95	-12 -17	577	570	-7	-1
Russell Square (north of Montague Place)	Northbound	174	314	140	80	237	221	-16	-7	144	315	171	119
Russell Square (north of Montague Place)	Southbound	237	194	-43	-18	553	111	-442	-80	477	145	-332	-70
Russell Square (south of Guilford Street)	Northbound	367	550	183	50	425	517	92	22	488	551	63	13
Russell Square (south of Guilford Street) Russell Square (west of Bedford Place)	Southbound Eastbound	617 56	621 41	-15	-27	627 56	594 27	-33 -29	-5 -52	687 81	646 25	-41 -56	-6 -69
Russell Square (west of Bedford Place)	Westbound	202	228	26	13	135	153	18	13	158	162	4	3
Southampton Row (north of Fisher Street)	Northbound	317	632	315	99	356	520	164	46	371	688	317	85
Southampton Row (north of Fisher Street)	Southbound	565	619	54	10	616	607	-9	-1	603	650	47	8
Southampton Row (south of Bloomsbury Place) Southampton Row (south of Bloomsbury	Northbound Southbound	630	611	194	47	453 613	631	178	39	533 690	727	194	36
Place) Southampton Row (south of Cosmo Place)	Northbound	379	596	217	57	464	588	124	27	505	707	202	40
Southampton Row (south of Cosmo Place)	Southbound	471	581	110	23	505	577	72	14	572	657	85	15
St Giles High Street (south of Andrew Borde Street)	Northbound	83	N/A	-	-	86	N/A	-	-	78	N/A	-	-
Tavistock Place (east of Marchmont Street)	Eastbound	179	265	86	48	197	290	93	47	232	318	86	37
Tavistock Place (east of Marchmont Street)	Westbound	264 260	n/a 343	83	32	173 210	n/a 26	-184	-88	221 287	n/a 369	82	29
Tavistock Place (west of Herbrand Street) Tavistock Place (west of Herbrand Street)	Eastbound Westbound	294	n/a	-	-	65	n/a	-104	-00	273	n/a	-	-
Tavistock Place (west of Marchmont Street)	Eastbound	162	245	83	51	166	17	-149	-90	198	106	-92	-46
Tavistock Place (west of Marchmont Street)	Westbound	238	n/a	-	-	177	n/a	-	-	207	n/a	-	-
Tavistock Square (north of Tavistock Place)	Northbound	334	483	149	45	67	285	218	325	504	532	28	6
Tavistock Square (north of Tavistock Place)	Southbound	541	459	-82	-15	56	50	-6	-11	533	526	-7	-1
Tavistock Square (S) (west of Woburn Place)	Eastbound	199	364	165	83	377	112	-265	-70	259	367	108	42
Tavistock Square (S) (west of Woburn Place) Tavistock Square (south of Endsleigh Place)	Westbound Northbound	457 274	n/a 404	130	47	233 450	n/a 549	99	22	390	n/a 499	177	55
Tavistock Square (south of Endsleigh Place)	Southbound	452	510	58	13	513	477	-36	-7	423	519	96	23
Tavistock Square (W) (south of Endsleigh Place)	Northbound	61	305	244	400	333	287	-46	-14	82	341	259	316
Tavistock Square (W) (south of Endsleigh Place)	Southbound	105	95	-10	-10	131	149	18	14	66	77	11	17
Taviton Street (south of Endsleigh Gardens) Taviton Street (south of Endsleigh Gardens)	Northbound Southbound	71 44	38 15	-33 -29	-46 -66	116 55	115	-1 60	-1 109	59 25	138 25	79	134
Theobalds Road (west of Emerald Street)	Eastbound	535	582	47	9	491	467	-24	-5	724	606	-118	-16
Theobalds Road (west of Emerald Street)	Westbound	600	554	-46	-8	426	634	208	49	665	723	58	9
Torrington Place (east of Chenies Mews)	Westbound	336	274	-62	-18	1085	993	-92	-8	389	246	-143	-37
Torrington Place (east of Gower Street)	Eastbound	172	210	38	22	311	154	-157	-50	215	298	83	39
Torrington Place (east of Gower Street) Torrington Place (west of Huntley Street)	Westbound Westbound	341 355	n/a 270	-85	-24	344 1433	n/a 1262	-171	-12	404 386	n/a 177	-209	-54
Tottenham Court Road (north of Capper Street)	Northbound	393	448	55	14	315	437	122	39	446	684	238	53
Tottenham Court Road (south of Alfred Mews)	Northbound	616	522	-94	-15	574	522	-52	-9	729	668	-61	-8
Tottenham Court Road (south of Great Russell Street)	Northbound	615	538	-77	-13	539	508	-31	-6	649	549	-100	-15
Tottenham Court Road (south of Stephen Street)	Northbound	660 264	347	-100 83	-15 31	558 348	423	-58 75	-10 22	696	618 413	-78 48	-11 13
Upper Woburn Place (north of Endsleigh Gardens) Upper Woburn Place (north of Endsleigh	Northbound Southbound	481	474	-7	-1	505	497	75 -8	-2	365 522	467	-55	-11
Gardens) Wakefield Street (south of Tavistock Place)	Northbound	19	17	-2	-11	32	29	-3	-2 -9	28	29	1	4
Wakefield Street (south of Tavistock Place)	Southbound	33	95	62	188	39	71	32	82	33	42	9	27
Woburn Place (north of Coram Street)	Northbound	468	556	88	19	133	354	221	166	590	543	-47	-8
Woburn Place (north of Coram Street)	Southbound	508	448	-60	-12	243	18	-225	-93	488	393	-95	-19

(1) Motor traffic speeds and volumes that are acceptable for cycling

At our 2013 AGM, our members passed a motion defining what speeds and volumes of motor vehicles in which it's acceptable to ask people to cycle.

We know from countless surveys and real-world examples that most people are scared to cycle when motor traffic is fast or there's lots of it.

Our motion is intended to create conditions on our streets that encourage mass cycling: conditions that are suitable for novice cyclists, children, the elderly, the disabled, as well as more confident and faster cyclists.

Our members have said:

- No-one should be expected to cycle among motor traffic travelling above 20mph;
- No-one should have to cycle in motor traffic volumes above 2000 passenger car units (PCUs) per day.

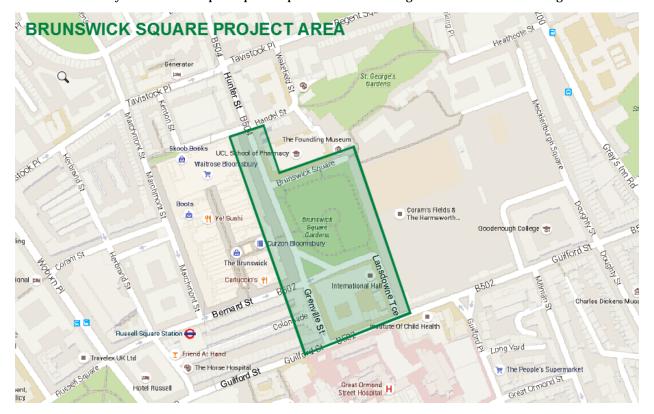
Our members have made it clear that proposed improvements for cycling that expect people to cycle in these conditions are wrong, will inevitably lead to a failure to encourage mass cycling, and that we should campaign for change when those basic principles are contravened.

We would absolutely expect core cycling networks as defined by Transport for London and the boroughs to adhere to our 20mph-2000 PCU limits.

We will also push for these limits to be used elsewhere wherever there's an opportunity (eg, broader transport schemes) because cyclists don't only cycle on core networks and everyone should be able to use as much of the whole Greater London street network as possible.

Our goal, in line with our 2014 Space for Cycling campaign demands, is removing through motor traffic from wide areas of residential and shopping streets and protected lanes/tracks on main roads (see below).

Brunswick Square Walking and Cycling Improvements


Overview

In March 2013, the Mayor of London launched his vision for cycling in London. A major element of the vision is the proposed Central London Cycle Grid — a network of cycle routes through Central London and the City, making it more attractive for people who don't cycle and safer for the increasing numbers who do. Encouraging more people to cycle is a key objective for Camden Council, the benefits are widespread and include: helping to reduce traffic congestion, improving air quality and improving the health of our residents.

In 2015, Camden Council started to build a new north-south walking and cycling route along Pancras Road linking Kentish Town to Kings Cross via Royal College Street. Camden Council, through a separate consultation is currently consulting on changes to Midland Road which links Pancras Road to Kings Cross, including the junction of Midland Road with Euston Road For more information or to respond please visit consultations.wearecamden.org/culture-environment/midland To the south of Euston Road, Transport for London (TfL), Islington and Camden Councils are also jointly asking for local people's views on extending the North-South Cycle Superhighway from Farringdon Station to King's Cross. For more information, or to respond to the North-South Cycle Superhighway please visit consultations.tfl.gov.uk/cycling/northsouth Should all of these projects be approved then there will effectively be a key cycling route from Kentish Town Road to Farringdon Road and beyond to Elephant and Castle, the latter under construction by TfL.

Why We Are Consulting

To capitalise on proposals from nearby schemes the Council has identified Brunswick Square as an important intersection of east-west and north-south cycle movements and would like to make some improvements that would link to those made between Kentish Town and Kings Cross and would help to provide a continuous walking and cycling route southwards to Bloomsbury. The proposals aim to deliver the key objectives of the Central London Cycle Grid and improve public spaces in an area of high footfall and historical significance.

This page and the drawing below provide details about proposals for Brunswick Square between Handel Street and Guilford Street and includes improvements on; Hunter Street, Brunswick Square, Bernard Street, Grenville Street and Lansdowne Terrace.

1 of 4 11/09/17, 20:24

In the 3-year period ending June 2015, 5 slight traffic collisions occurred within the project area; 3 involving cyclists, 1 pedestrian and 1 powered-two-wheeler (motorcycle). There were no serious casualties or fatalities within that timeframe.

Although the number and severity of collisions is relatively low, road safety is a key consideration. By reducing road widths; simplifying junctions by limiting the number of permitted movements; raising areas to pavement level; improving pedestrian crossings; and helping to make cyclists more visible, it is likely there will be reductions in speeds and collisions which are complemented by better public spaces.

Proposed Changes

The proposed changes are shown on the drawing below and include the following:

- Public realm improvements to the corner of Brunswick Square (west) where it joins Bernard Street and Grenville Street, providing a large pedestrian-only space with new trees, seating and better lighting. This is only possible by closing Lansdowne Terrace where it meets Brunswick Square. Access to Lansdowne Terrace from Hunter Street or Bernard Street would be closed to motor traffic (except cyclists). Southbound motor traffic would continue to Guilford Street via Grenville Street. Northbound motor traffic would no longer be able to access Hunter Street and beyond toward Euston Road from Guilford Street (access would be retained via alternative routes).
- Access from Bernard Street to both Guilford Street and Brunswick Square (northbound towards Hunter Street) would be retained.
- Access to Lansdowne Terrace would be retained from Guilford Street.
- Road raised to pavement level on Brunswick Square between the junctions of Hunter Street with Brunswick Square and Grenville Street with Bernard Street.
- Existing zebra crossings improved. New zebra crossings provided on Grenville Street and Bernard Street near the junctions with Brunswick Square.
- Pavements widened on Brunswick Square, Lansdowne Terrace, Bernard Street and Grenville Street to optimise space allocated to pedestrians and cyclists.
- New cycle track between Brunswick Square (west) and Lansdowne Terrace.
- Inset parking bays to accommodate majority of existing parking provision. There would be a net loss of two residents' permit parking bays throughout the project area.

Below are before and after visualisations of what Brunswick Square could look like if there were broad support for the scheme.

Brunswick Square at junction with Hunter Street and Bernard Street

Existing

Proposed

<u>Landsdowne Terrace facing closed section of Brunswick Square towards Bernard Street</u>

Existing

Proposed

Brunswick Square Overview of Proposals

(this document can also be found under 'Related Documents' at the bottom of the page)

3 of 4 11/09/17, 20:24

What Happens Next

While it will not be possible to reply to you individually, all comments will be taken into account. The Cabinet Member for Regeneration, Transport and Planning will make a decision in June 2016 on whether or not to proceed with the scheme and you will be informed via the council's website of the outcome of this consultation within three months, where possible. Under the Local Government (Access to Information) Act 1985, we may not treat your response confidentially, as it will be available for public inspection. Please only write to us about the consultation issue. If you want to comment on any other matter, please use a separate letter.

Areas

- Bloomsbury
- Holborn and Covent Garden
- King's Cross

Audiences

- Businesses
- Councillors
- Emergency services
- Local groups and organisations
- Police
- Residents
- Statutory Groups
- Ward Councillors

Interests

· Transport and streets

We've slowed down traffic in residential streets – now let's reduce it

By admin | February 5, 2016 | Thoughts, Writing

Article published in Local Transport Today, 5th February

Physics tells us that faster-moving motor vehicles pose more risk to pedestrians and cyclists. This is backed up by <u>research from the London School of Hygiene and Tropical Medicine</u> showing that London's 20mph zones succeed in reducing casualties. And across the country it's increasingly accepted that motorists should stick to 20mph in residential streets.

This has been welcomed by many advocating walking, cycling, and liveable neighbourhoods. And they're right. But it's only half the story. We also need to talk about motor traffic volumes, and that conversation hasn't even started.

If – all else being equal – more speed means more risk, the same is true for volumes of motor traffic. Higher volumes, like higher speeds, are associated with <u>higher injury risks</u> for the vulnerable. Volumes of motor traffic are correlated with local noise and air pollution.

Reducing motor traffic is possible. In residential streets, which aren't built to cater for large volumes of motor traffic and don't need to take it, we can reduce volumes to very low levels while allowing residents and deliveries to get where they need to go. There's a range of methods: for example, using bollards, planters and gates to block through motor traffic, or using opposing

A "modal filter" in Hackney

one-way systems (with bike contraflows) to similar effect. Street treatments can help ensure motor vehicles that do use the street slow down.

The street where I live has benefited from such schemes and so sees perhaps 100-200 motor vehicles each day – the number you'd expect its households might generate, based on local trip rate levels. Importantly this makes the street easy to cross, better for cycling, and more pleasant for residents whether inside our homes (we get very little traffic noise) or walking down the street.

Many other residential streets in my borough see thousands of motor vehicles pass through, the vast majority of which are non-local (drivers using residential streets as a cut-through to avoid main roads, i.e. rat-running). As <u>research at the University of the West of England confirms</u>, this is damaging for residents. Streets become noisier, more polluted, harder to cross, and less pleasant environments all round.

Rat-running particularly threatens and restricts the mobility of the most vulnerable, like children and older people. Many residential streets don't have formal crossings. Pedestrians need to make their way across, often between car parking on both sides. So no wonder people tend to say they'd <u>prefer to live in cul-de-sacs</u> with low levels of motor traffic.

It's not fair that my residential street is basically free from rat-running, but others in similar streets must put up with the problems it generates. So I believe the next frontier for liveable neighbourhoods should be reducing motor traffic volumes.

We should be calculating population-based exposure to rat-running, and setting targets for reducing it. If we collect motor traffic volumes across the network, we can establish what proportion of households are exposed to unacceptable levels of motor traffic. We can look at how this exposure is distributed, in relation to factors such as age, levels of deprivation, borough, and ethnicity: it's also a health equity issue.

The first step would be to discuss and set a limit – as we've done with 20mph – that we think is an acceptable level of motor traffic in residential streets. The aspiration is then that no one should live in a street that exceeds those levels.

How would we measure that limit? Thinking about this highlights the need for more data – often we don't count what matters for residents, walking, and

cycling. We're good at calculating highway level-of-service, using speed and congestion data, but don't have good measures of motor traffic volumes where people live. That's because we've traditionally focused on the driving experience, not on the walking, cycling, or residential experience.

There are two ways of setting a limit on motor traffic volumes in residential streets. One is in relation to the levels of residential trips you'd expect to see on a street – i.e. setting a maximum percentage of trips to be non-local. This would be ideal, as it would adjust for local trip rates and number of households – but it's a bit complicated for that reason. I think we should look into this, but it'll need more data.

In the meantime, we could set a simple numerical limit. My initial research suggests residential motor traffic volumes (i.e. residents, visitors and deliveries) will be in the low hundreds for many residential streets. So if there are 1,000 or more motor vehicles per day, more than half are likely to be ratrunners. 1,000 motor vehicles per day (equating to around 100 in peak hour) is also the level below which, according to Manual for Streets, pedestrians will share space with motor vehicles. Which is another reason to plump for 1,000 for a first stab at a limit – although more research is needed.

We won't get to a position where 100% of households live in streets with under 1,000 motor vehicles per day because people also live on main roads. There we're unlikely to get down to anywhere near 1,000 but things can still be done to reduce motor traffic and mitigate its impact. We can build cycle tracks, widen pavements, reduce vehicle emissions, improve crossings, plant trees, improve side road treatments, and so on. And for the majority of households living on residential streets, it's not unrealistic to think we can dramatically reduce the amount of rat-running they live with.

This approach will bring long-term benefits too. Thanks to ground-breaking research conducted in 1998 by Sally Cairns and her colleagues, we know reducing capacity for motor traffic can help cut the overall amount of motor traffic. Removing a lane, or blocking a rat run, doesn't just redistribute motor traffic. Some of those trips will change destination, change mode, or simply not happen at all.

Midland Road and Euston Road / Judd Street Junction

Overview

In June 2015, Camden Council implemented a number of changes on Pancras Rd between Royal College Street and Midland Road in order to improve road safety for pedestrians and cyclists. The changes included providing 2m wide 'stepped' cycle lanes for northbound and southbound cyclists and introducing better crossings for pedestrians.

In March 2013 the Mayor of London launched his vision for cycling in London. A major element of the vision is the proposed new Central London Cycle Grid – a network of cycle routes through Central London and the city, making it more attractive to people who don't cycle and safer for the increasing numbers who do. As part of the Cycle Grid, the Council would like to extend the recent improvements on Pancras Road south into Midland Road until Euston Road, providing a safe and continuous protected cycle route. In partnership with Transport for London, we are also consulting on proposals to improve conditions for cyclists and pedestrians crossing the busy Euston Road junction, including cyclists connecting with the proposed North-South Cycle Superhighway on Judd Street.

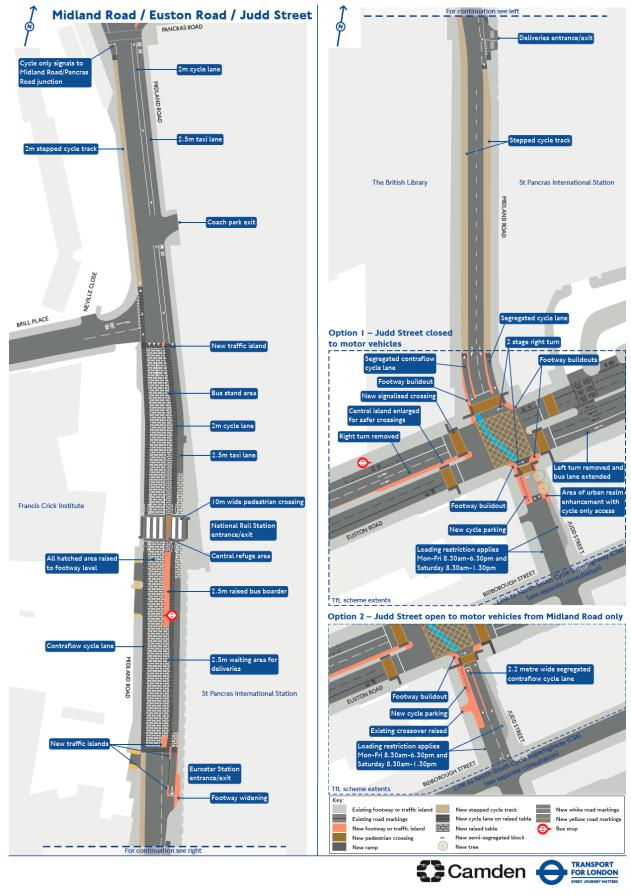
Why We Are Consulting

Proposals

The proposed changes are outlined below and also shown on the drawing attached.

Midland Road / Euston Road / Judd St Junction

At the Judd Street / Midland Road / Euston Road junction, TfL has developed two potential options:


Option 1 – Full closure of Judd Street at Euston Road / Midland Road junction to allow a dedicated cycle crossing across Euston Road

- Only cyclists and pedestrians would be able to enter and exit Judd Street at the Euston Road junction. This
 would create a safer environment for cyclists by allowing them to enter and exit Judd Street separately
 without mixing with other traffic
- This proposal is expected to reduce the amount of through traffic passing through Judd Street, creating a safer and more pleasant environment for pedestrians and cyclists
- Motor vehicles would still be able to access Judd Street using other routes
 - Option 2 Judd Street entry only for motorists from Midland Road, with segregated northbound contraflow cycle track
- Motorists would not be able to exit Judd Street onto Euston Road. Access would still be available using other routes
- Motorists would not be able to enter Judd Street by turning left or right off Euston Road; the only motorist
 entry to Judd Street from the Euston Road junction would be by travelling straight over from Midland Road.
 Banning the turns would address a common cause of collisions at the junction and allow a separate traffic
 signal stage for cyclists
- A contraflow segregated cycle track on approach to the junction would provide protected space for cyclists to continue northbound towards Euston Road

The proposed traffic restrictions would mean some motorists would need to find alternative routes. Access to and from Judd Street would still be available using alternative local access routes, including via Upper Woburn Place and Gray's Inn Road.

Both options:

- Cycle-only green signal to allow cyclists to cross Euston Road separately from motor traffic
- New signalised pedestrian crossing on Euston Road, west of Judd Street, with a widened central island. This would be made possible by banning the left and right turns onto Judd Street from Euston Road
- Extended bus lane on Euston Road westbound approach to Judd Street (made possible by banning the left turn onto Judd Street)
- Wider pavement on Judd Street, with new cycle parking to make it easier for cyclists to use local businesses
- Two-stage right turn areas to allow cyclists to access Judd Street and Midland Road without crossing lanes of moving traffic

Midland Road

Along Midland Rd we are proposing:

- A northbound contraflow stepped / protected cycle lane (segregated at the junction)
- A southbound stepped cycle lane (segregated at the junction)
- Removal of existing traffic island on Midland Road outside the St. Pancras International Rail Station
- Introduction of a large raised area to ease pedestrian movement

- Removal of existing signal crossing and installation of a wide zebra crossing to reduce the wait time for pedestrians wanting to cross.
- Construction of a bus boarding area

Proposed Midland Rd street-scene outside St.Pancras Station / Francis Crick Institute looking south toward British Library.

Proposed Midland Rd street-scene outside St.Pancras Station / British Library looking north.

Traffic impact of these proposals

TfL has designed its proposals to minimise the impact on Euston Road traffic whilst still providing time and space for cyclists and pedestrians. However, both options could mean some slight increases journey times and queuing for general traffic at busy times, particularly travelling eastbound on Euston Road and exiting Midland Road heading west. Buses on Euston Road are not expected to be significantly affected as they would

continue to use bus lanes, although there could be delays at busy times for routes travelling eastbound from Midland Road.

TfL would look to mitigate any impacts as much as possible, including by using its sophisticated traffic signalling technology.

The proposed traffic restrictions would mean some motorists would need to find alternative routes. Access to and from Judd Street would still be available using alternative local access routes, including via Upper Woburn Place and Gray's Inn Road.

Other local consultations

North-South Cycle Superhighway: TfL, Camden Council and Islington Council are consulting on proposals for the North-South Cycle Superhighway between Judd Street in King's Cross and Stonecutter Street near Holborn Viaduct. The route would connect with the segregated cycle track currently under construction between Stonecutter Street and Elephant & Castle. Please see tfl.gov.uk/cycle-north-south for details. King's Cross gyratory: TfL is currently consulting on initial ideas to simplify the road network in King's Cross for all users. Please see tfl.gov.uk/kings-cross-gyratory for details.

Both consultations close on Sunday 20 March 2016.

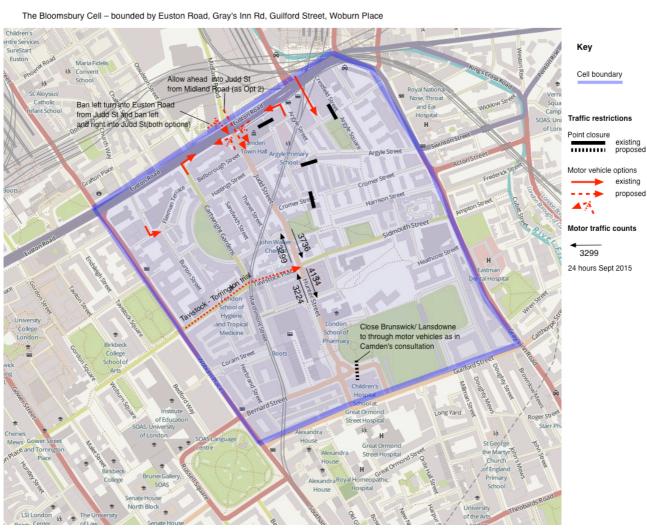
Public events

You can discuss the proposals with members of the Midland Road project team at the Horsfall Room, Kings Place, 90 York Way, N1 9AG at the following events:

- Monday 15 February, from 18.30 to 20.30
- Friday 19 February, from 14.00 to 17.00

You will also be able to talk to staff about the North-South Cycle Superhighway and King's Cross gyratory consultations at these events

5 of 5 11/09/17, 20:26


Motor traffic congestion in Judd Street

Judd Street and Hunter Street have been dominated by motor vehicle traffic in recent years. A count in September 2015 found over 7000 motor vehicles in one day on both the northern and southern sides of the junction with Tavistock Place (i.e. between Leigh Street and Handel Street). LCC has adopted a policy that for a road to be suitable for shared use by people on bikes and by motor vehicles, there should be fewer than 2000 motor vehicles per day (or 200 per hour) [LCC AGM 2013. Motion 3].

On most days, long queues of motor vehicles are seen in both Judd Street and Hunter Street. This has been associated with the <u>Tavistock Place trial</u> in which Tavistock Place became one-way eastbound to make room for the new uni-directional cycle tracks. But irrespective of the cause, it is very important to prevent motor vehicle congestion. It's bad for residents and for everyone else who uses the street, particularly if they walk or cycle.

Reducing rat running in Bloomsbury

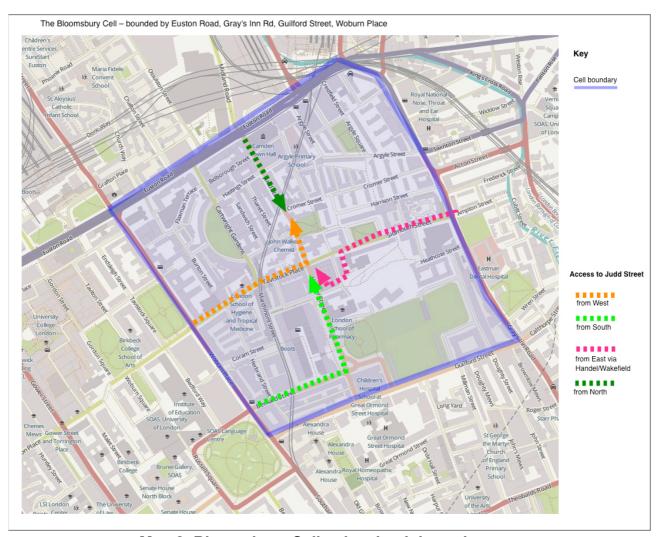
The term *rat-running* is used to refer to drivers using secondary roads or residential side streets instead of nearby main roads when crossing an area such as eastern Bloomsbury. They may cut through to avoid traffic signals or congestion on main roads, for example, in our case, Euston Road. (Driving to an address in the area or starting a journey from an address within the area is not described as rat running). In order to discuss the problems around Judd Street and Hunter Street we need an enclosing cell. I have chosen Guilford Street as the southern boundary although ideally, this might be further south.

Map 1. Bloomsbury Cell - showing traffic restrictions

The cell boundary is shown in blue in Map 1. Existing road closures are shown as short black lines: many can be seen in the area around Argyle Square which was freed from through motor traffic over ten years ago by a combination of one-ways and road closures. All of those road closures and most of the one-ways are permeable to people on bikes. The one-way eastbound of the Tavistock Place trial is shown with a red dotted line. Early in 2016, Camden Council consulted on two schemes, both of which had the potential to reduce rat-running through Judd Street and Hunter Street.

The Brunswick Square consultation described on <u>Camden Council's website</u> proposed the closure of Lansdowne Terrace at its junction with Brunswick Square. This is shown on Map 1 by a short dashed black line. This closure would prevent northbound motor traffic from entering the cell (and heading up Hunter Street) from the southern boundary on Guilford Street.

The Midland Road consultation described on <u>Camden Council's website</u> was designed to enable people using the two-way protected cycle route on Pancras Road to travel in both directions on Midland Road and to cross safely over Euston Road into Judd Street. To allow for a protected cycle crossing and to reduce motor vehicle flow in Judd Street and Hunter Street, the following restrictions were proposed at the junction of Judd Street and Euston Road:


- 1. Ban the motor vehicle left turn from Judd Street into Euston Road preventing people from driving up Judd Street in order to turn westbound into Euston Road.
- 2. Ban the motor vehicle left and right turns from Euston Road into Judd Street substantially reducing the volume of motor traffic entering the top end of Judd Street.
- 3. Optionally to ban southbound motor vehicles from Midland Road entering Judd Street together with (2) this would prevent any motor vehicles entering the north end of Judd Street; this option offers a trade-off between a quieter road and more driving options for residents.

Map 1 shows with red dashed lines the turn restrictions on Judd St at Euston Road, as well as the option of southbound motor traffic from Midland Road into Judd Street.

Driving into the area with the above filtering

To simplify the following discussion the term 'filtering' is used to refer to measures like the above road closures, banned turns and one-ways.

The initial reaction from some of the people living inside an area to proposals for filtering measures is that they won't be able to get to or from their homes or businesses in their cars or by taxi. This is not a problem for people living in the many areas throughout Camden that have been freed of rat-running. Nor need it be a problem for those living in and around Judd Street as is illustrated in Map 2 below.

Map 2. Bloomsbury Cell - showing inbound routes

The inbound routes are:

- from the west via Tavistock Place orange
- from the south via Russell Square and Bernard Street light green
- from the east via Sidmouth Street pink
- from the north via Midland Road into Judd Street dark green; but if the option to close
 the northern end of Judd Street is chosen, routes from the north could come via Woburn
 Place or Acton Street and then follow the inbound route from the west or the east
 respectively.

Driving out of the area with the above filtering

Map 3 below shows that it will be possible to make journeys by car or taxi in all directions from the area around Judd Street.

The outbound routes are:

- to the west and north-west via Cartright Gardens, Marchmont Street and Coram Street dark brown
- to the south via Hunter Street light green
- to the east via Sidmouth Street pink
- to the north-east via the right turn into Euston Road via Mabledon Place orange

 The Bloomsbury Cell bounded by Euston Road, Gray's Inn Rd. Guilford Street, Woburn Place

Core of the state of the state

Map 3. Bloomsbury Cell - showing outbound routes

Conclusion on filtering in the Bloomsbury Cell

The measures on trial in Tavistock Place, together with those proposed in the Brunswick Square and Midland Road consultations should substantially reduce the volume of motor vehicle traffic in the portion of the Bloomsbury Cell outside the already privileged Argyle Square area. This will benefit residents and all of those who travel into the area to work and to study. It will also leave residents free to use a taxi or their car when they need to make journeys in and out of the area. Usually such changes result in more people walking or cycling instead of using motor transport and hence motor traffic levels drop still further.